THE GEORGE WASHINGTON UNIVERSITY

Latent Class Analysis of Substance Use and HIV VL Trajectory Patterns Among PWH in DC Cohort

WASHINGTON, DC

Morgan Byrne¹, Anne K. Monroe¹, Lindsey Powers Happ¹, Rupali K. Doshi¹, Michael A. Horberg², Amanda D. Castel^{1,} on behalf of the DC Cohort Executive Committee¹ ¹George Washington University, Washington, DC, USA; ²Kaiser Permanente Mid-Atlantic Permanente Research Institute, Rockville, MD, USA

Background

- People with HIV (PWH) with substance use disorders (SUD) have worse HIV RNA suppression than PWH without SUD.
- Identifying distinct profiles of polysubstance use can assist in assessing additional health care needs.

Objective to characterize substance use (SU) patterns and their conditional relationship with Viral Load (VL) trajectories among PWH.

Methods

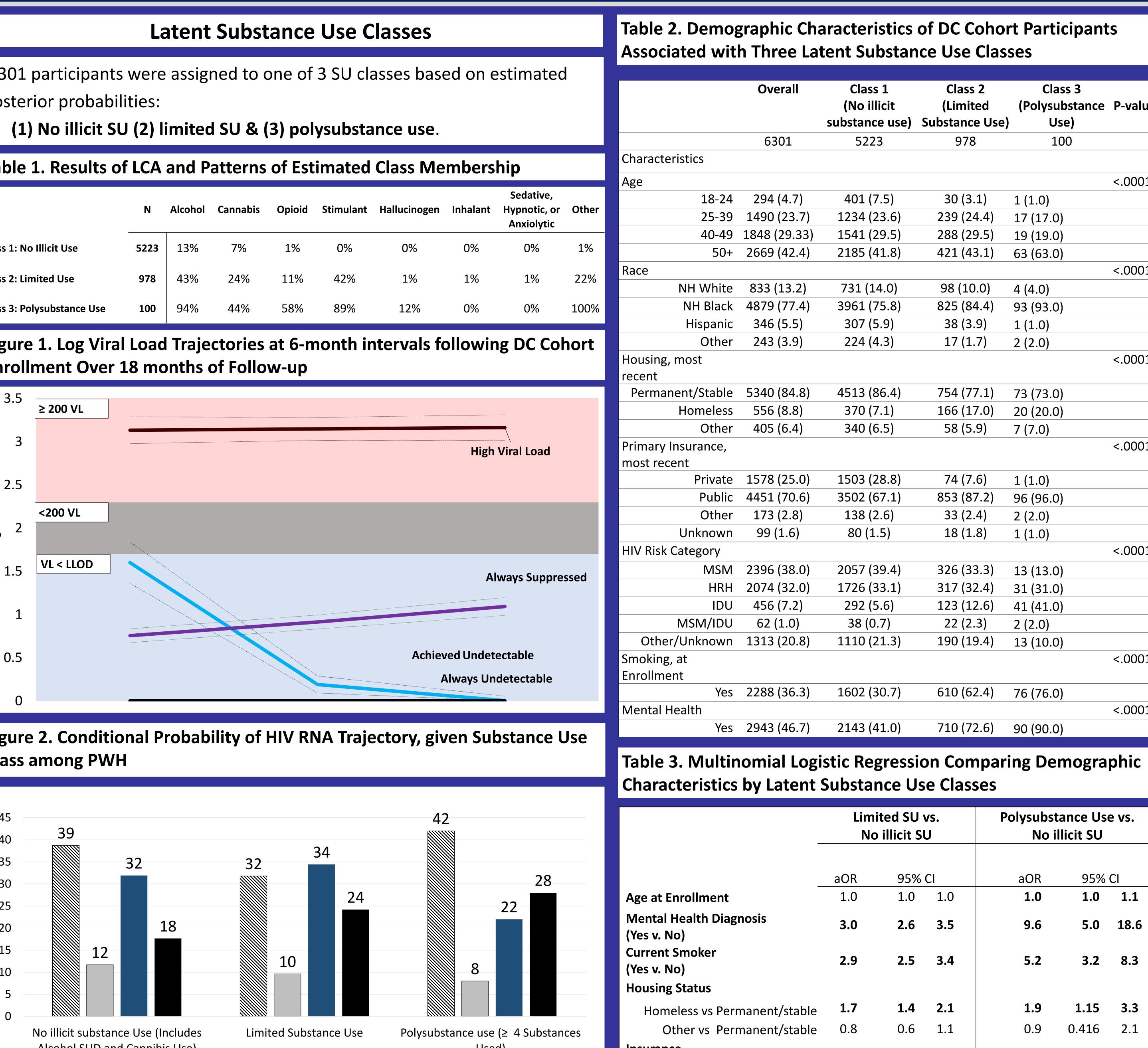
Study Population

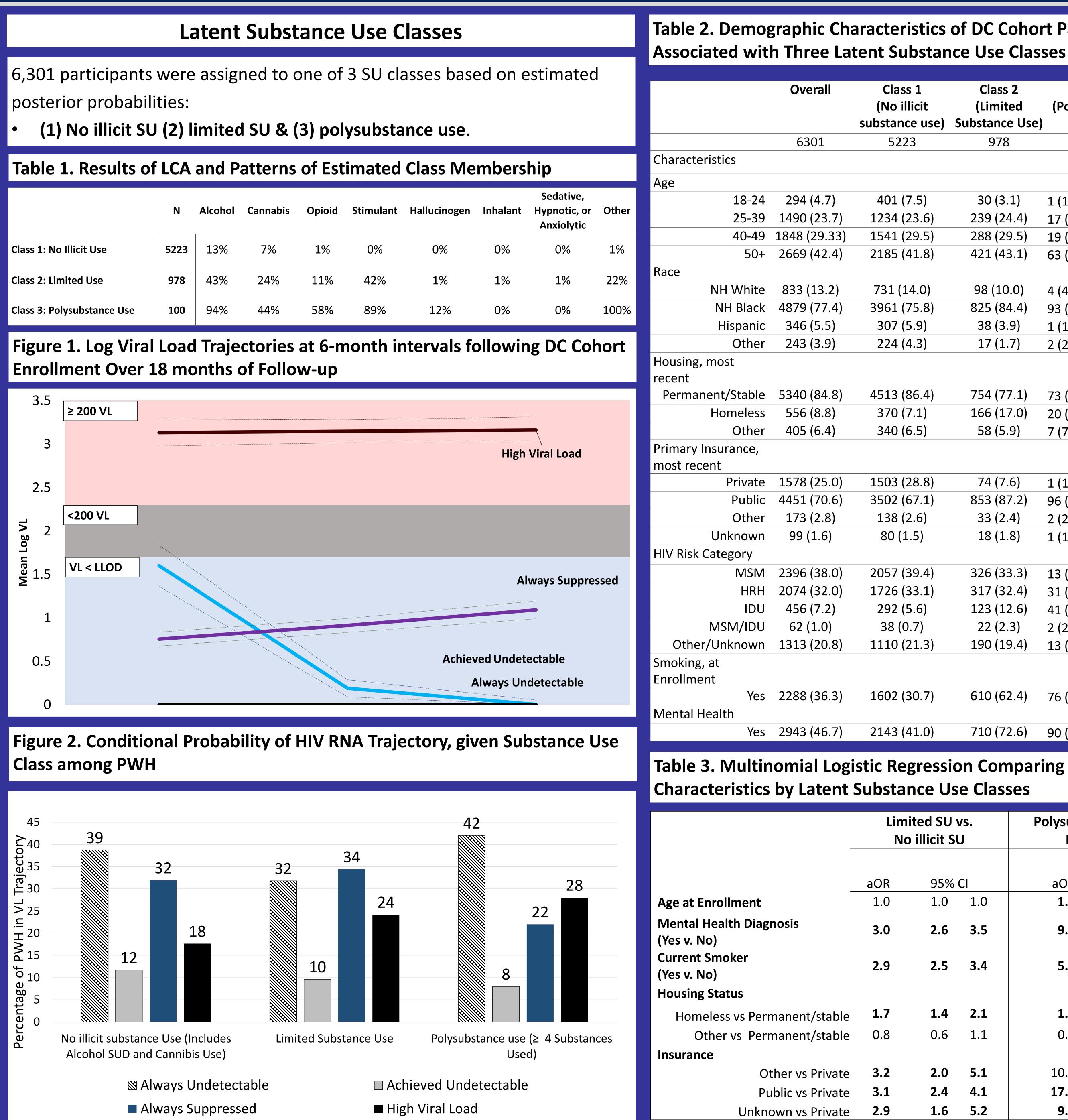
DC Cohort is a longitudinal study of PWH in care at 15 clinics in Washington, DC. Data were abstracted from participants' EMRs at 14 of 15 sites.

- Included PWH aged >18 years
- Enrolled Jan 2011-Mar 2018
- $\bullet \geq 3$ VL measures with at least 18 months of follow-up

Substance Use Variables & Other Covariates

SU was defined as documented at DC Cohort enrollment, SU-related ICD9/10, and reported drug abuse treatments throughout follow-up for defined categories including: Alcohol, Cannabis, Stimulant, Inhalant, Hallucinogen, **Opioid, Sedative-hypnotic drugs (including anxiolytic** use), and Other unspecified drug use.


Other covariates included demographic characteristics collected at baseline, smoking history and mental health diagnoses that presented through follow-up.


Analysis Methods

- Latent class analysis (LCA) was used to identify patterns of substance use using fit indexes in Mplus software version 5.2. (Table 1)
- Associations in demographic and clinical characteristics between the SU classes were evaluated using χ^2 test (Table 2).
- HIV VL Trajectories were chosen by optimizing fit statistics and clinical interpretation. (Figure 1)
- Conditional membership in HIV RNA trajectories was evaluated among LCA SU groups (Figure 2).
- Multinomial Logistic regression was used to model variables associated with SU class membership (Table 3).
- Analyses performed using SAS Version 9.4 and Significance tests evaluated with alpha set at 0.05.

Acknowledgements: DC Cohort: Data in this poster were collected by the DC Cohort: Data in this poster were collected by the DC Cohort Study Group with investigators and research staff located at: Children's National Medical Center Adolescent (Lawrence D'Angelo) and Pediatric (Natella Rakhmanina) clinics; The Senior Deputy Director of the DC Department of Health HAHSTA (Michael Kharfen); Family and Medical Center Adolescent (Lawrence D'Angelo) and Pediatric (Natella Rakhmanina) clinics; The Senior Deputy Director of the DC Cohort Study Group with investigators and research staff located at: Children's National Medical Center Adolescent (Lawrence D'Angelo) and Pediatric (Natella Rakhmanina) clinics; The George Washington (Princy Kumar); The Georg University Adult Infectious Disease Clinic (Ronald Wilcox), and Pediatric Clinic (Sohail Rana); Kaiser Permanente Mid-Atlantic (Michael Horberg); La Clinica Del Horberg); Pueblo, (Ricardo Fernandez); Washington Hospital (Lose Bordon); Unity Health (Carl Dieffenbach, Henry Masur); Providence Hospital (Lose Bordon); Unity Health (Carl Diefenbach, Henry Masur); Providence Hospital (Lose Bordon); Unity Health (Carl Diefenbach, Henry Masur); and Whitman-Walker Health (Carl Diefenbach, Henry Masur); Providence Hospital (Lose Bordon); Unity Health (Carl Diefenbach, Henry Masur); Providence Hospital (Lose Bordon); Unity Health (Carl Diefenbach, Henry Masur); Providence Hospital (Lose Bordon); Unity Health (Carl Diefenbach, Henry Masur); Providence Hospital (Lose Bordon); Unity Health (Carl Diefenbach, Henry Masur); Providence Hospital (Lose Bordon); Unity Health (Carl Diefenbach, Henry Masur); Providence Hospital (Lose Bordon); Unity Health (Carl Diefenbach, Henry Masur); Providence Hospital (Lose Bordon); Unity Health (Carl Diefenbach, Henry Masur); Providence Hospital (Lose Bordon); Unity Health (Carl Diefenbach, Henry Masur); Providence Hospital (Lose Bordon); Unity Health (Carl Diefenbach, Henry Masur); Providence Hospital (Lose Bordon); Unity Health (Carl Diefenbach, Henry Masur); Providence Hospital (Lose Bordon); Unity Health (Carl Diefenbach, Henry Masur); Providence Hospital (Lose Bordon); Unity Health (Carl Diefenbach, Henry Masur); Providence Hospital (Lose Bordon); Unity Health (Carl Diefenbach, Henry Masur); Providence Hospital (Lose Bordon); Unity Health (Carl Diefenbach, Henry Masur); Providence Hospital (Lose Bordon); Unity Health (Lose Bordon); Providence Hospital (Lose Bordon); Providence

	N	Alcohol	Cannabis	Opioid	Stimulant	Hallucinogen	Inhalant	Se Hyp An
ass 1: No Illicit Use	5223	13%	7%	1%	0%	0%	0%	
ass 2: Limited Use	978	43%	24%	11%	42%	1%	1%	
ass 3: Polysubstance Use	100	94%	44%	58%	89%	12%	0%	

Results

Participant	S			
_				
Class 3	D value			
olysubstance Use)	F-Value			
100				
	<.0001			
1.0)				
(17.0)				
(19.0)				
(63.0)	<.0001			
4.0)	~.0001			
+.0) (93.0)				
<u>(99.0)</u> 1.0)				
2.0)				
	<.0001			
(73.0)				
(20.0) 7.0)				
,,	<.0001			
1.0)				
(96.0)				
2.0)				
1.0)	<.0001			
(13.0)				
(31.0)				
(41.0)				
2.0)				
(10.0)				
	<.0001			
(76.0)				
<u>,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, </u>	<.0001			
(90.0)				
Demographic				

Polysubstance Use vs. No illicit SU

R	95%	CI
.0	1.0	1.1
.6	5.0	18.6
.2	3.2	8.3
.9	1.15	3.3
.9	0.416	2.1
.9	1.0	123.7
.4	2.4	126.0
.8	0.6	162.4

Participants in both the polysubstance or limited SU, when compared to the no illicit SU class (**Table 3**) after adjusting for demographic factors were :

- Less likely to have private insurance (P<0.05)
- **More** likely to be current smokers (P<0.001)
- **More** likely to be unstably housed/ homeless (P<0.01)

Polysubstance use participants were most likely to be categorized in the trajectory that did not achieve VS, followed by participants in the limited SU class (28% and 24% respectively; p-value <0.001).

Study Limitations

This is a clinical EMR-based study, that does not collect additional substance use information following enrollment other than diagnoses codes and treatment information

Conclusions

- Results provide insight into patterns of SU among DC Cohort enrollees.
- Limited and polysubstance users have higher proportions of high VL trajectories.
- Despite high proportions of substance use, most participants were either able to achieve or maintain viral suppression
- SU treatment especially for newly diagnosed PWH is encourage to improve ability to achieve and sustain VS.

Author Correspondence: Morgan Byrne, MPH

Email: byrne410@gwu.edu

891