The influence of genetics on syndromic and non-syndromic cases of cleft lip and cleft palate

By Alice McGarry
Background

- Clefts of the lip and/or palate (CL/P) are congenital deformities of the face which can complicate speech, nutrition, hearing, and psychological development.
- CL/P has a global prevalence of about 1 in 700 live births, though varies greatly by geographical region and socioeconomic status.
 - Mayan populations in Guatemala have higher than average rates of cleft lip
- Prevention efforts focus on environmental factors that may interact with specific genes to cause CL/P
 - CL/P = Cleft of the lip and/or palate
 - CLP = Cleft of the lip with or without palate
 - CP = Cleft palate only
Background

** Syndromic **
- Cleft with some other deformity
- 30% of CLP cases, 50% of CP cases
- Caused by any of 300+ syndromes
- Most due to Mendelian genetic mutations, chromosomal abnormalities, teratogens

** Non-Syndromic **
- Cleft of the lip or palate is the only deformity present
- 20% of etiology caused by genetic mutations
- Genes, environmental factors, and their interactions
- Specific genes and interactions have yet to be identified
Hypotheses

• While genetic influences play a role in both syndromic and non-syndromic CL/P, the influence is stronger for syndromic CL/P.

• This will be identified by a greater percentage of syndromic CL/P cases with family history of orofacial clefts compared with non-syndromic CL/P cases.
Methods

• Retrospective cross-sectional study of children in Guatemala with CL/P who received treatment from Smile Train.

• Caretakers of the children were surveyed and provided information on family history of CL/P and presence of other deformities used to determine syndromic status.

• Simple and multivariate logistic regression was used to calculate the odds ratio of family history of CL/P by syndromic status.

 • Adjusted for cleft type, age, year of encounter
Results

<table>
<thead>
<tr>
<th>Total Population</th>
<th>Syndromic</th>
<th>Non-syndromic</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family History of CL/P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immediate Family History of CL/P</td>
<td>1817</td>
<td>155 (8.5%)</td>
<td>1436 (79.0%)</td>
</tr>
<tr>
<td>Distant Family History of CL/P</td>
<td>332 (18.3%)</td>
<td>31 (20.0%)</td>
<td>287 (20.0%)</td>
</tr>
<tr>
<td>Cleft Lip with or without Palate (CLP)</td>
<td>1669 (91.9%)</td>
<td>139 (89.7%)</td>
<td>1308 (91.1%)</td>
</tr>
<tr>
<td>Cleft Palate Only (CP)</td>
<td>133 (7.3%)</td>
<td>16 (10.3%)</td>
<td>113 (7.9%)</td>
</tr>
<tr>
<td>Age at first encounter [mean (st dev)]</td>
<td>4.06 (6.88)</td>
<td>4.95 (6.92)</td>
<td>3.93 (6.70)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Common Odds Ratio</th>
<th>Adjusted Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family History</td>
<td>1.03 (0.68, 1.56)</td>
<td>1.04 (0.67, 1.61)</td>
</tr>
<tr>
<td>Immediate Family History</td>
<td>0.81 (0.41, 1.56)</td>
<td>0.73 (0.37, 1.44)</td>
</tr>
<tr>
<td>Distant Family History</td>
<td>1.06 (0.66, 1.69)</td>
<td>1.21 (0.74, 1.98)</td>
</tr>
</tbody>
</table>
Conclusions

- Family history of CL/P is not associated with syndromic status
- Possible misclassification of syndromic status
 - Rate of syndromic cases lower than expected
 - 15% of cases of most common syndrome (VWS) don’t have additional deformities, and so appear non-syndromic
 - Cases surveyed at a very young age may not have other deformities present yet
- Limitation in family history information obtained
 - Only two indicator variables were obtained for immediate and distant family history
 - Possible misclassification of family history would be non-differential, and bias results towards the null
 - If more detailed information were collected on the number of family members with CL/P, we might see an association with syndromic status
Recommendations

• A consistent definition of “syndromic” must be developed before research can move forward
 • How should cases that appear non-syndromic, but genetically appear syndromic, be classified?
 • Is there a grey area between syndromic and non-syndromic?

• Family history may still present a way to identify high-risk mothers that would benefit from preventative measures
 • More detailed information about family history might be used to predict syndromic status
Acknowledgements

Thank you to Dr. Scott Quinlan, Assistant Teaching Professor at the Department of Epidemiology and Biostatistics of George Washington University, and Ann Goldman, professor at the Department of Epidemiology and Biostatistics of George Washington University

Also thank you to Smile Train for collecting and providing the data

https://www.smiletrain.org/