Background

Antiretroviral Drug Resistance

Antiretroviral drug (ARD) target HIV genes to prevent viral replication.

- Mutations in the HIV genome can result in drug resistance, leading to lower anti-retroviral concentrations and failure to prevent health outcomes.

- **Acquired drug resistance (ADR)** results when resistant mutations are selected by drug pressure.

- **Transmitted drug resistance (TDR)** results when a resistant virus is transmitted from one person to another.

- Monitoring of resistance can inform treatment and prevention strategies and assess the impact of interventions, guidelines, and new ARV regimens.

Methods

- Retrospectively analyzed data from THE DC COHORT.
- Conducted bi- and multivariable logistic regression analysis to identify factors associated with patient characteristics and drug resistance.
- Assessed for DRMs in first genotype only.

Objectives

- Examine associations between patient characteristics and drug resistance.
- Describe time trends in resistance, by drug class.

Results

- Prevalence of resistance in any drug was TDR: 20%, ADR: 40%, CDR: 45%.
- Odds ratios and 95% confidence intervals a

Discussion

- In this cohort, almost half of participants tested had resistance to at least one drug, and resistance to newer drug classes appeared to be increasing.
- As new treatment guidelines continue to evolve, it is important to monitor resistance patterns to ensure that new regimens remain effective.

Conclusions

- Associations between patient characteristics and resistance were similar for ADR and CDR, but predictors of CDR did not predict TDR or CDR.
- Women had significantly lower odds of TDR than men (and non-significantly lower odds of TDR and ADR).

References

