Evaluation of Public Health Interventions: Recent Developments in Cluster Randomized Trials and Related Designs

Department of Epidemiology & Biostatistics, GWU, March 26 2018

Liz Turner, PhD

Assistant Professor, Department of Biostatistics & Bioinformatics and Duke Global Health Institute (DGHI) Director, Research Design and Analysis Core, DGHI

Duke Department of Biostatistics & Bioinformatics Duke University School of Medicine

Collaborators

Duke Global Health

Wendy O'Meara, Dorothy Dow, Joe Egger, Larry Park, Tazeen Jafar, Lijing Yan, Eve Puffer, Eric Green

Duke Biostatistics

Liz Delong, Fan Li, John Gallis, Alyssa Platt, Ryan Simmons, Kingshuk Roy, Siyun Yan

GWU

Brandon Kohrt

Harvard

Melanie Prague (& University of Bordeaux), Vikram Patel

NIH

David Murray

LSHTM

Rhian Daniel, Helen Weiss, Simon Brooker, Kate Halliday, Liz Allen

UNC Chapel Hill

Joanna Maselko, Brian Pence, John Preisser

Other affiliations

Atif Rahman (Liverpool); Siham Sikander (HDRF, Pakistan); Hengshi Yu (Minnesota), and many others.....

Overview

- I. Motivating example
- 2. Clustering
- 3. Small # clusters & baseline covariate imbalance
- 4. Stepped wedge designs

CLUSTER RANDOMIZED TRIALS IN PUBLIC HEALTH: RECENT DEVELOPMENTS

Cluster randomized trials Motivating example

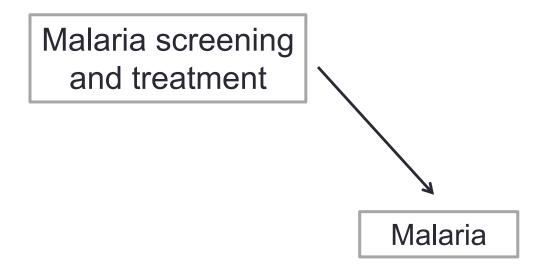
Health and Literacy Intervention (HALI) cluster randomized trial (CRT)

- 101 schools: 51 intervention and 50 control
 ~ 5000 children → ~ 50/school
- Intervention: screen & treat 1/term for 2 years
- Primary endpoint: malaria (yes vs. no) at 24 months

Health and Literacy Intervention Project

International Initiative for Impact Evaluation

Health and Literacy Intervention (HALI) cluster randomized trial (CRT)

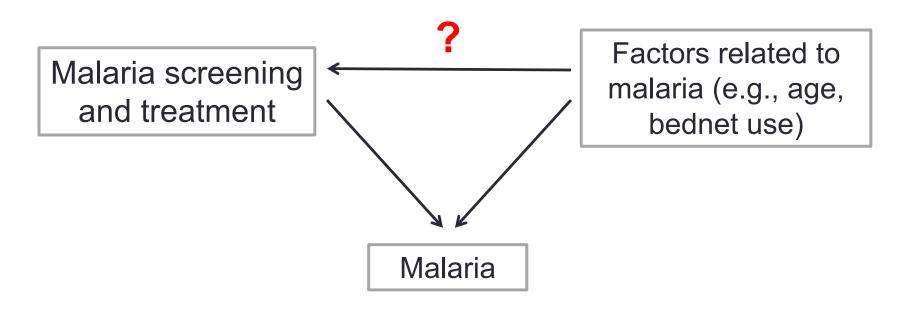


Hypothesis: screening and treating children for malaria will lead to reduced <u>prevalence</u> of malaria

Health and Literacy Intervention (HALI) cluster randomized trial (CRT)

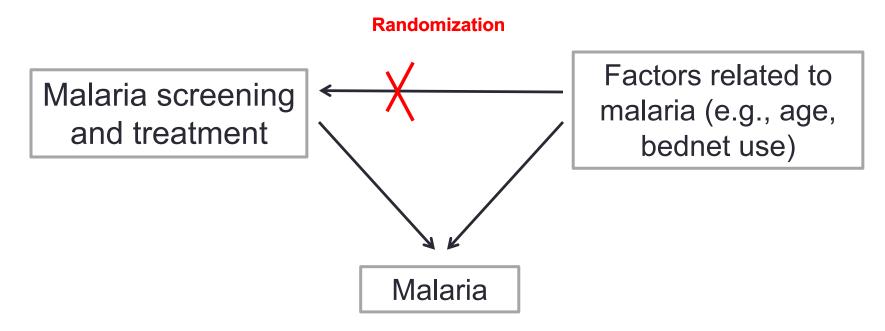
Hypothesis: screening and treating children for malaria will lead to reduced <u>prevalence</u> of malaria

Health and Literacy Intervention (HALI) cluster randomized trial (CRT)



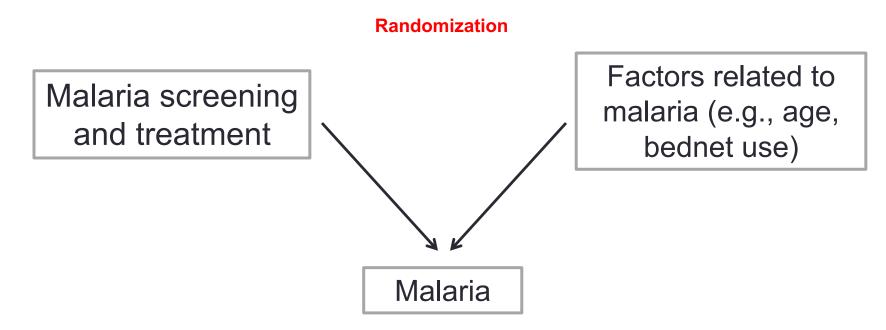
Hypothesis: screening and treating children for malaria will lead to reduced <u>prevalence</u> of malaria

Health and Literacy Intervention (HALI) cluster randomized trial (CRT)



Hypothesis: screening and treating children for malaria will lead to reduced <u>prevalence</u> of malaria

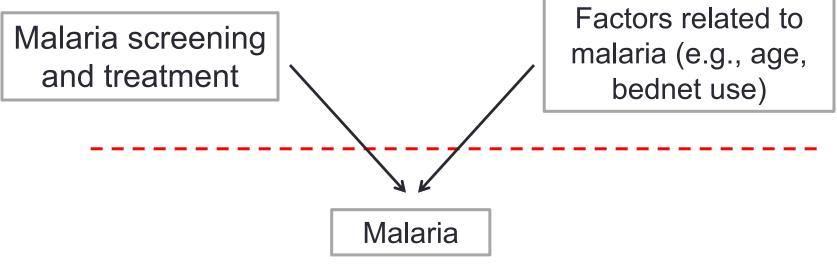
Health and Literacy Intervention (HALI) cluster randomized trial (CRT)



Hypothesis: screening and treating children for malaria will lead to reduced <u>prevalence</u> of malaria

Health and Literacy Intervention (HALI) cluster randomized trial (CRT)

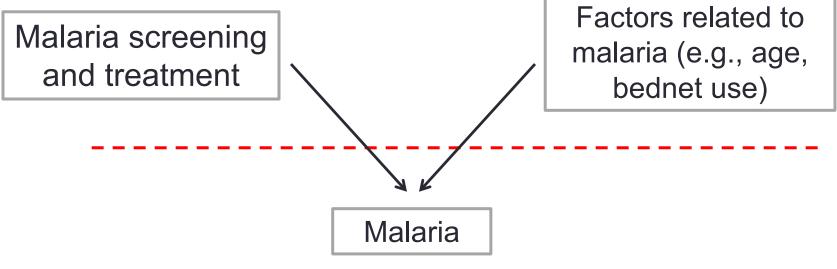
Level 2: Randomization at clinic (i.e., cluster) level



Level 1: Individual-level outcomes nested in schools

Health and Literacy Intervention (HALI) cluster randomized trial (CRT)

Level 2: Randomization at clinic (i.e., cluster) level

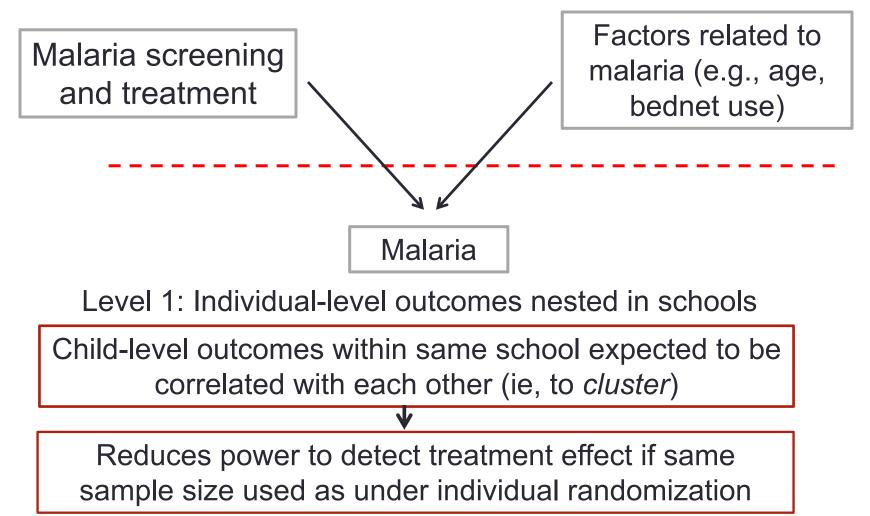


Level 1: Individual-level outcomes nested in schools

Child-level outcomes within same school expected to be correlated with each other (ie, to *cluster*)

Health and Literacy Intervention (HALI) cluster randomized trial (CRT)

Level 2: Randomization at clinic (i.e., cluster) level



Implications of using CRT design

- CRT (statistical) price to pay
 - Lower power for same total sample size under individual randomization
 - Harder to detect an intervention effect
- So why use CRT design?
 - Intervention at cluster level (e.g., pump in village)
 - To avoid treatment contamination under individual randomization (e.g., HALI trial)
 - Logistically easier to implement trial

HALI trial

Two published outcomes papers

OPEN O ACCESS Freely available online

PLOS MEDICINE

Impact of Intermittent Screening and Treatment for Malaria among School Children in Kenya: A Cluster Randomised Trial

Katherine E. Halliday¹*, George Okello², Elizabeth L. Turner³, Kiambo Njagi⁴, Carlos Mcharo⁵, Juddy Kengo⁵, Elizabeth Allen⁶, Margaret M. Dubeck⁷, Matthew C. H. Jukes⁸, Simon J. Brooker^{1,9}

JOURNAL OF RESEARCH ON EDUCATIONAL EFFECTIVENESS http://dx.doi.org/10.1080/19345747.2016.1221487

Improving Literacy Instruction in Kenya Through Teacher Professional Development and Text Messages Support: A Cluster Randomized Trial

Matthew C. H. Jukes^{a,b}, Elizabeth L. Turner^c, Margaret M. Dubeck^{a,b,d}, Katherine E. Halliday^e, Hellen N. Inyega^f, Sharon Wolf^g, Stephanie Simmons Zuilkowski^h, and Simon J. Brooker^e

HALI trial

Two published outcomes papers

OPEN O ACCESS Freely available online

PLOS MEDICINE

Impact of Intermittent Screening and Treatment for Malaria among School Children in Kenya: A Cluster Randomised Trial

Katherine E. Halliday¹*, George Okello², Elizabeth L. Turner³, Kiambo Njagi⁴, Carlos Mcharo⁵, Juddy Kengo⁵, Elizabeth Allen⁶, Margaret M. Dubeck⁷, Matthew C. H. Jukes⁸, Simon J. Brooker^{1,9}

Note: no evidence of an effect of intervention on malaria prevalence

HALI trial

Two published outcomes papers

Evidence of an effect on literacy outcomes due to a teacher intervention evaluated in same trial

JOURNAL OF RESEARCH ON EDUCATIONAL EFFECTIVENESS http://dx.doi.org/10.1080/19345747.2016.1221487

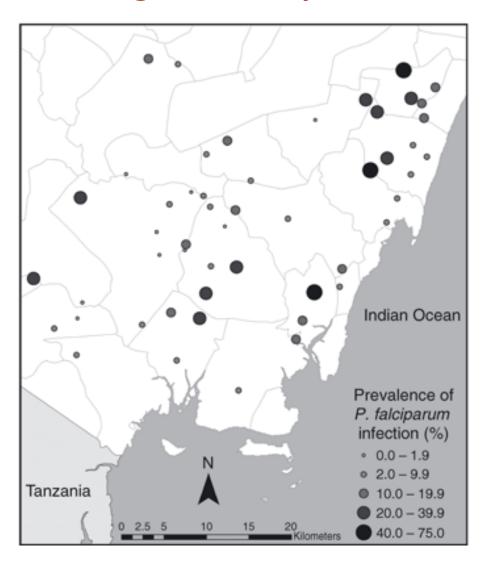
Improving Literacy Instruction in Kenya Through Teacher Professional Development and Text Messages Support: A Cluster Randomized Trial

Matthew C. H. Jukes^{a,b}, Elizabeth L. Turner^c, Margaret M. Dubeck^{a,b,d}, Katherine E. Halliday^e, Hellen N. Inyega^f, Sharon Wolf^g, Stephanie Simmons Zuilkowski^h, and Simon J. Brooker^e CLUSTER RANDOMIZED TRIALS IN PUBLIC HEALTH: RECENT DEVELOPMENTS

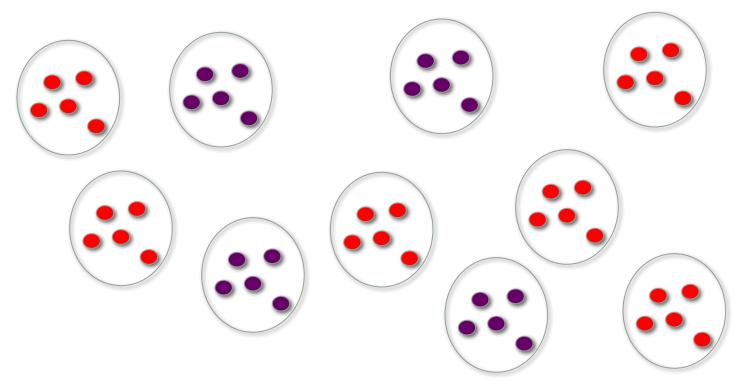
Cluster randomized trials Design challenge: clustering

CLUSTER RANDOMIZED TRIALS IN PUBLIC HEALTH: RECENT DEVELOPMENTS

Baseline clustering: malaria prevalence by school

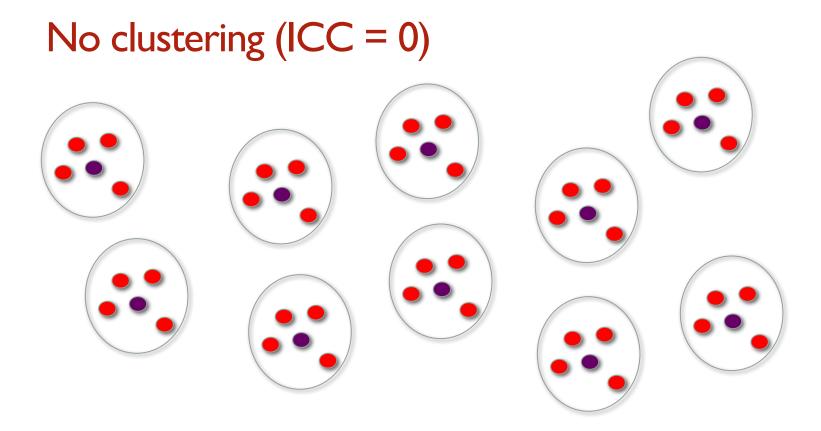


Complete clustering (ICC = I)



MalariaNo malaria

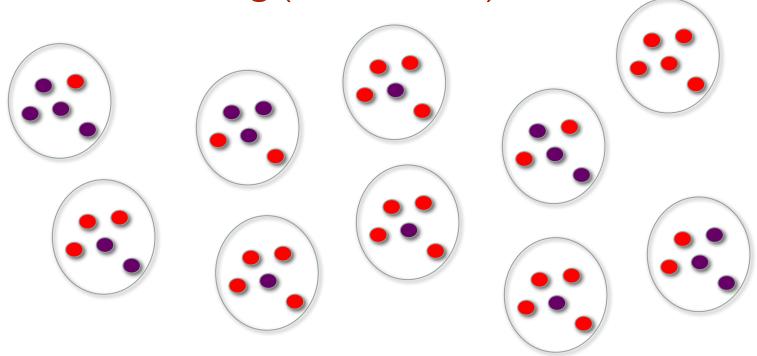
>1 child /school gives no more information than 1 child/school since every child in a given school has the same outcome

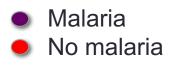


MalariaNo malaria

20% prevalence of malaria in each school No structure by school - more like a random sample of children

Some clustering (0 < ICC < I)





A more typical situation: e.g., cluster-prevalence 0% - 80%

Clustering in CRTs

- Outcomes in same clusters more similar to each other than to those in other clusters
- Previous example
 - 50 children in 10 schools
 - Effective sample size between 10 50
- Implications for statistical inference
- Major challenge in design & analysis

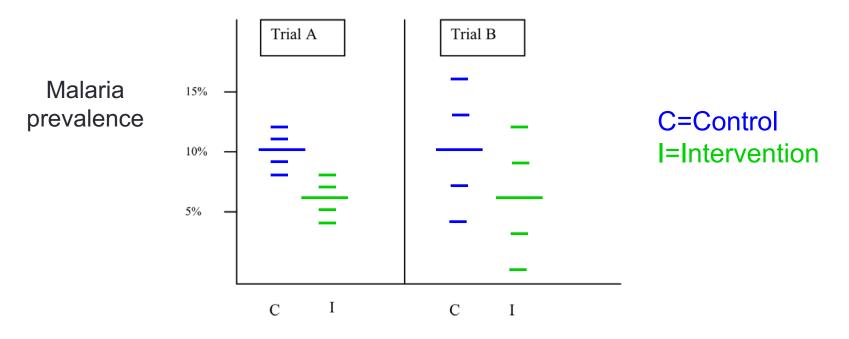
Measure of clustering: ICC

- Intra-cluster correlation coefficient (ICC, ρ)
- Most commonly used measure of clustering
- Ranges: 0-1; 0= no clustering; 1= total clustering
- Typically < 0.2, commonly around 0.01 0.05

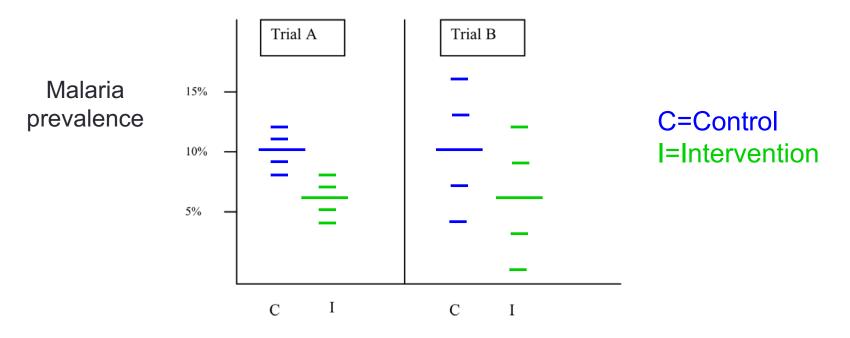
ICC for continuous outcomes:

$$\rho = \frac{\sigma_B^2}{\sigma_B^2 + \sigma_W^2} = \frac{\sigma_B^2}{\sigma_{Total}^2}$$

Involves both Between-cluster & Within-cluster variance



- 5 schools each randomized to control and intervention
- 100 eligible participants per clinic measured

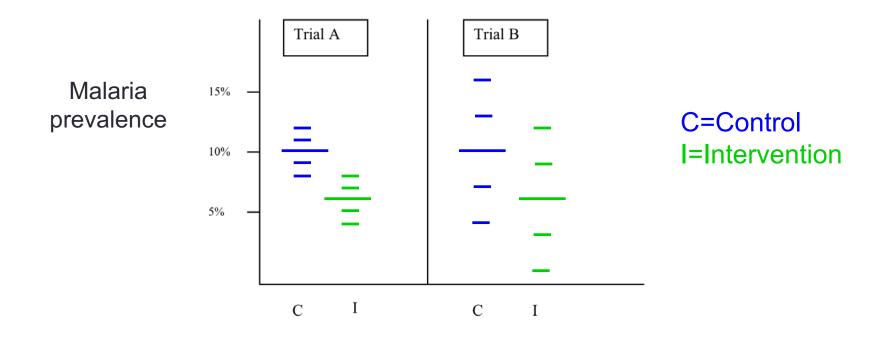


- 5 schools each randomized to control and intervention
- 100 eligible participants per clinic measured

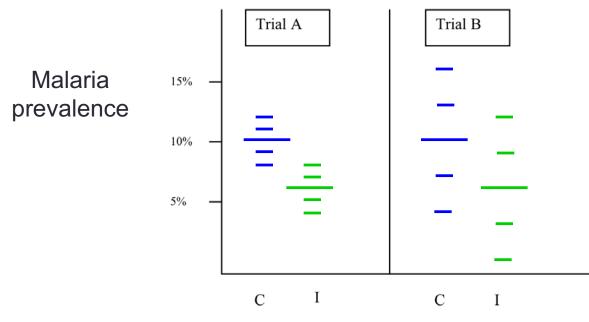
Overall malaria prevalence in each trial: 10% vs 6% **Question**: is intervention effective?

CLUSTER RANDOMIZED TRIALS IN PUBLIC HEALTH: RECENT DEVELOPMENTS

Clustering in CRTs: implications for analysis



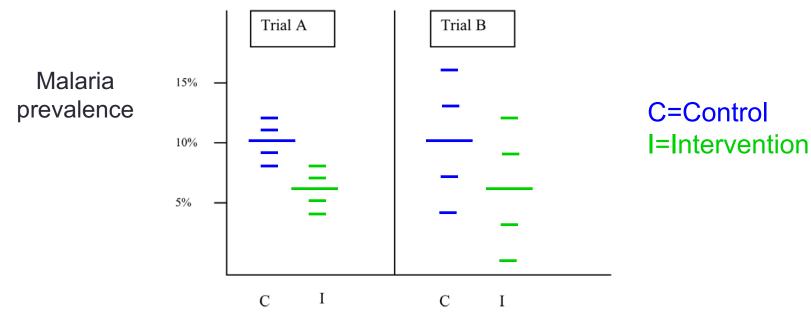
Which trial shows more evidence of benefit?



Study features

?

Example from Hayes & Moulton (2009)

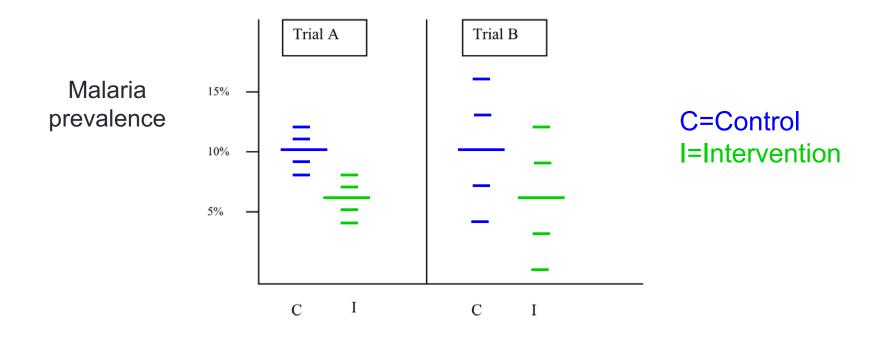


Study features

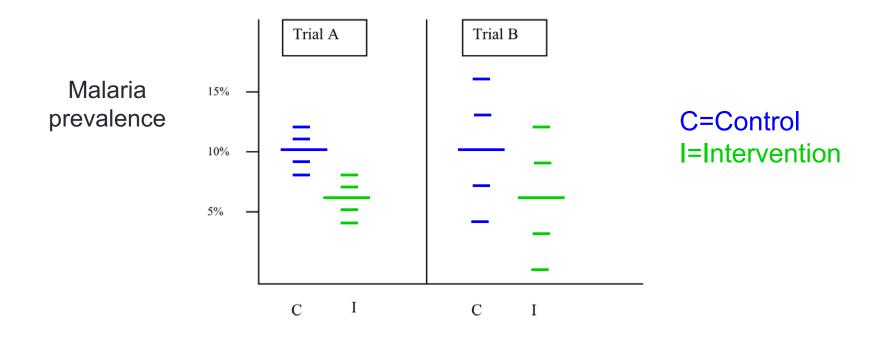
- Trial A:
 - Lower between-school variability
 - Little overlap of I & C clinic-level proportions
- Trial B: overlap of I & C school-level proportions

Example from Hayes & Moulton (2009)

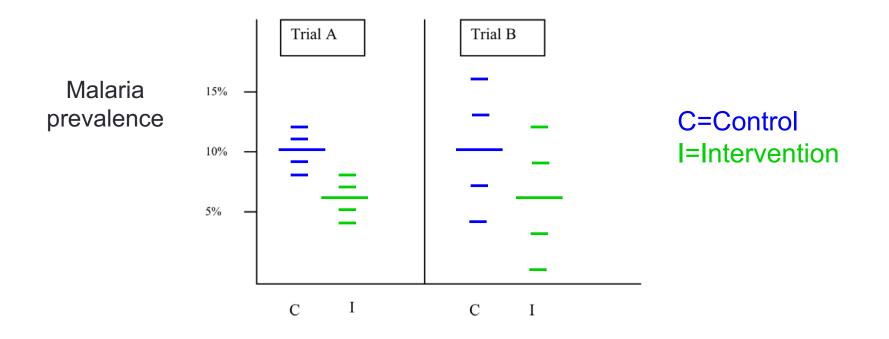
- If ignore clustering: p-value = **0.02** for both trials
- Comparison of 10% (50/500) vs 6% (30/500) by chi-sq. test



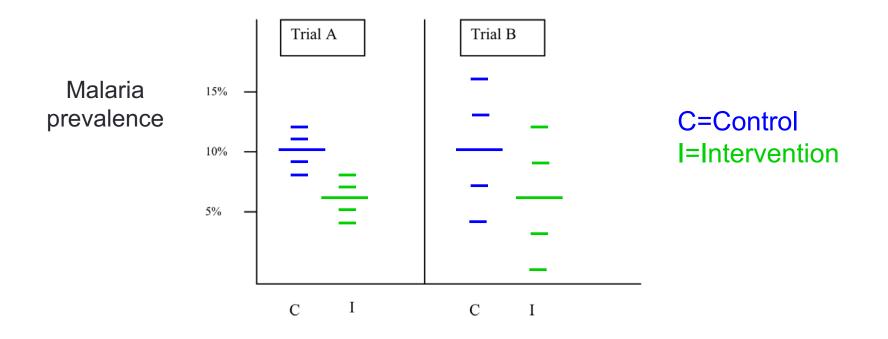
- Trial B p-value accounting for clustered design = ?
- If ignore clustering: p-value = 0.02



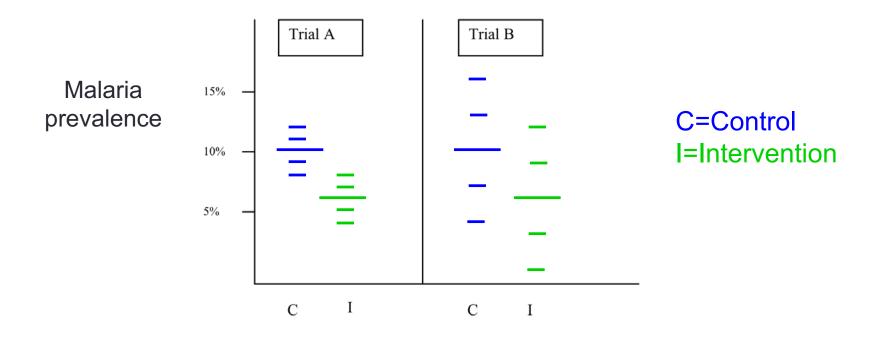
- Trial B p-value accounting for clustered design = 0.17
- If ignore clustering: p-value = 0.02



- Trial A p-value accounting for clustered design = ?
- If ignore clustering: p-value = **0.02**



- Trial A p-value accounting for clustered design = 0.01
- If ignore clustering: p-value = 0.02



- Trial A p-value accounting for clustered design* = **0.01**
- Trial B p-value accounting for clustered design* = 0.17

*By using a cluster-level analysis where the 10 cluster-level proportions (5 per arm) are treated as continuous variables and analyzed with Wilcoxon rank sum test

Example from Hayes & Moulton (2009)

Summary: clustering & analysis

- Two example trials
 - Analyzed with cluster-level analysis
 - Overall sample size (# schools/trial) =10
 - Both trials had same signal (10% vs 6%)
 - Totally different conclusions from each trial
 - Between-cluster variability Trial A < Trial B
 - P-value Trial A < P-value Trial B
 - Important: If ignore clustered design, could claim 'significant' when not (eg, Trial B)

Summary: clustering & analysis

- Cluster-level analysis rarely used
- Typically use regression methods
 - Random effects / mixed effects models
 - Generalized estimating equations (GEE)
 - Analyze individual-level data
 - e.g., N=1000 participants/trial not N=10 schools

Recent examples from my research CRT methods

AJPH METHODS

Review of Recent Methodological Developments in Group-Randomized Trials: Part 1—Design

In 2004, Murray et al. reviewed Elizabeth L. Turner, PhD, Fan Li, MSc, John A. Gallis, ScM, Melanie Prague, PhD, and David M. Murray, PhD

AJPH METHODS

Review of Recent Methodological Developments in Group-Randomized Trials: Part 2—Analysis

In 2004, Murray et al. reviewed Elizabeth L. Turner, PhD, Melanie Prague, PhD, John A. Gallis, ScM, Fan Li, MSc, and David M. Murray, PhD

Recent examples from my research CRT design

BMJ Open Innovative public-private partnership to target subsidised antimalarials: a study protocol for a cluster randomised controlled trial to evaluate a community intervention in Western Kenya

> Jeremiah Laktabai,¹ Adriane Lesser,² Alyssa Platt,^{2,3} Elisa Maffioli,^{2,4} Manoj Mohanan,^{2,4,5} Diana Menya,⁶ Wendy Prudhomme O'Meara,^{2,6,7} Elizabeth L Turner^{2,3}

STUDY PROTOCOL

Reducing stigma among healthcare providers to improve mental health services (RESHAPE): protocol for a pilot cluster randomized controlled trial of a stigma reduction intervention for training primary healthcare workers in Nepal

Brandon A. Kohrt^{1,2,3*}, Mark J. D. Jordans^{2,4}, Elizabeth L. Turner^{1,5}, Kathleen J. Sikkema^{1,6}, Nagend Sauharda Rai^{1,2,3}, Daisy R. Singla^{7,8}, Jagannath Lamichhane⁹, Crick Lund^{4,10} and Vikram Patel^{11,12,}

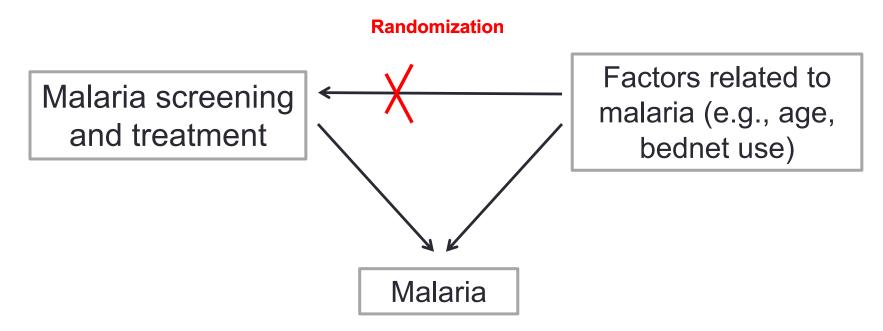
Cluster randomized trials Design challenge: clustering

Solution: design & analyze accounting for it

Cluster randomized trials Design challenge: baseline imbalance

Motivating example CRT

Health and Literacy Intervention (HALI)



Goal: randomization → baseline balance of covariates **Check**: baseline tables for 101 clusters (schools)

Table 1. Baseline characteristics of 5,233 study children in the 50 control and 51 IST intervention schools.

Characteristics; n (%) ^a	Measure/Subcharacteristic	Control	Intervention
School characteristics ^b		50 schools	51 schools
Exam score	Mean (SD)	223.4 (27.7)	225.8 (29.0)
School size	Median (IQR) [min, max]	505 (308, 961) [85, 4,891]	568 (389, 692) [2
Enrolled class 1	Mean (SD) [min, max]	24.4 (3.3) [10,30]	25.8 (1.5) [23,30]
Enrolled class 5	Mean (SD) [min, max]	26.0 (4.6) [8,30]	27.3 (3.3) [16,32]
School programmes	Feeding	22 (44.0)	27 (52.9)
	De-worming	50 (100.0)	49 (96.1)
	Malaria control	9 (18.4)	12 (23.5)
Child characteristics ^b		2,523 children	2,710 children
Age ^c	Mean (SD)	10.1 (2.8)	10.3 (2.8)
	5–9	1,041 (41.2)	1,069 (39.5)
	10-12	877 (34.8)	925 (34.1)
	13–20	605 (24.0)	716 (26.4)
Sex	Male	1,257 (49.8)	1,319 (48.7)
Child sleeps under net	Usually	1,668 (67.3)	1,682 (63.1)
	Treated net ^d	1,357 (83.3)	1,308 (80.5)
	Last night ^d	1,606 (96.3)	1,609 (95.7)

Halliday (2014), PLOS Medicine, 11(1) e1001594 http://www.plosmedicine.org/article/info%3Adoi%2F10.1371%2Fjournal.pmed.1001594

Table 1. Baseline characteristics of 5,233 study children in the 50 control and 51 IST intervention schools.

Characteristics; n (%) ^a	Measure/Subcharacteristic	Control	Intervention
School characteristics ^b		50 schools	51 schools
Exam score	Mean (SD)	223.4 (27.7)	225.8 (29.0)
School size	Median (IQR) [min, max]	505 (308, 961) [85, 4,891]	568 (389, 692) [
Enrolled class 1	Mean (SD) [min, max]	24.4 (3.3) [10,30]	25.8 (1.5) [23,30]
Enrolled class 5	Mean (SD) [min, max]	26.0 (4.6) [8,30]	27.3 (3.3) [16,32]
School programmes	Feeding	22 (44.0)	27 (52.9)
	De-worming	50 (100.0)	49 (96.1)
	Malaria control	9 (18.4)	12 (23.5)
Child characteristics ^b		2,523 children	2,710 children
Age ^c	Mean (SD)	10.1 (2.8)	10.3 (2.8)
	5-9	1,041 (41.2)	1,069 (39.5)
	10-12	877 (34.8)	925 (34.1)
	13-20	605 (24.0)	716 (26.4)
Sex	Male	1,257 (49.8)	1,319 (48.7)
Child sleeps under net	Usually	1,668 (67.3)	1,682 (63.1)
	Treated net ^d	1,357 (83.3)	1,308 (80.5)
	Last night ^d	1,606 (96.3)	1,609 (95.7)

http://www.plosmedicine.org/article/info%3Adoi%2F10.1371%2Fjournal.pmed.1001594

Table 1. Baseline characteristics of 5,233 study children in the 50 control and 51 IST intervention schools.

Characteristics; n (%) ^a	Measure/Subcharacteristic	Control	Intervention
School characteristics ^b		50 schools	51 schools
Exam score	Mean (SD)	223.4 (27.7)	225.8 (29.0)
School size	Median (IQR) [min, max]	505 (308, 961) [85, 4,891]	568 (389, 692) [2
Enrolled class 1	Mean (SD) [min, max]	24.4 (3.3) [10,30]	25.8 (1.5) [23,30]
Enrolled class 5	Mean (SD) [min, max]	26.0 (4.6) [8,30]	27.3 (3.3) [16,32]
School programmes	Feeding	22 (44.0)	27 (52.9)
	De-worming	50 (100.0)	49 (96.1)
	Malaria control	9 (18.4)	12 (23.5)
Child characteristics ^b		2,523 children	2,710 children
Age ^c Good	Mean (SD)	10.1 (2.8)	10.3 (2.8)
	5–9	1,041 (41.2)	1,069 (39.5)
balance of ag	10-12	877 (34.8)	925 (34.1)
	13–20	605 (24.0)	716 (26.4)
Sex	Male	1,257 (49.8)	1,319 (48.7)
Child sleeps under net	Usually	1,668 (67.3)	1,682 (63.1)
	Treated net ^d	1,357 (83.3)	1,308 (80.5)
	Last night ^d	1,606 (96.3)	1,609 (95.7)

Table 1. Baseline characteristics of 5,233 study children in the 50 control and 51 IST intervention schools.

Characteristics; n (%) ^a	Measure/Subcharacteristic	Control	Intervention
School characteristics ^b		50 schools	51 schools
Exam score	Mean (SD)	223.4 (27.7)	225.8 (29.0)
School size	Median (IQR) [min, max]	505 (308, 961) [85, 4,891]	568 (389, 692) [
Enrolled class 1	Mean (SD) [min, max]	24.4 (3.3) [10,30]	25.8 (1.5) [23,30]
Enrolled class 5	Mean (SD) [min, max]	26.0 (4.6) [8,30]	27.3 (3.3) [16,32]
School programmes	Feeding	22 (44.0)	27 (52.9)
	De-worming	50 (100.0)	49 (96.1)
	Malaria control	9 (18.4)	12 (23.5)
Child characteristics ^b		2,523 children	2,710 children
Age ^c	Mean (SD)	10.1 (2.8)	10.3 (2.8)
	5–9	1,041 (41.2)	1,069 (39.5)
	10-12	877 (34.8)	925 (34.1)
	13–20	605 (24.0)	716 (26.4)
Sex	Male	1,257 (49.8)	1,319 (48.7)
Child sleeps under net	Usually	1,668 (67.3)	1,682 (63.1)
Some imbalance	Treated net ^d	1,357 (83.3)	1,308 (80.5)
some impaiance	Last night ^d	1,606 (96.3)	1,609 (95.7)
of bodnot uso			

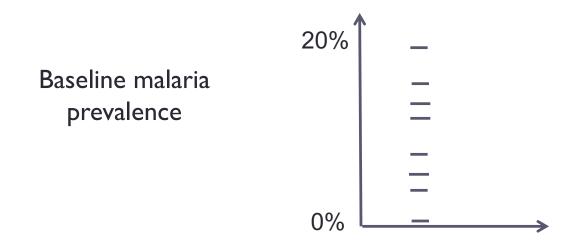
of bednet use

http://www.plosmedicine.org/article/info%3Adoi%2F10.1371%2Fjournal.pmed.1001594

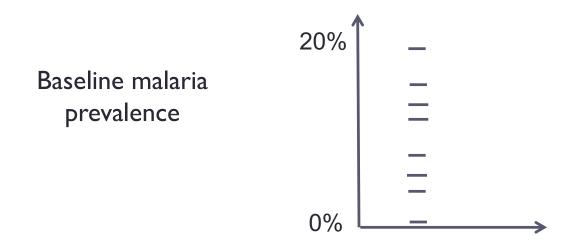
Small # of clusters & baseline imbalance

- CRTs often enroll small # (<40) clusters
- Randomization may not balance baseline covariates
- Baseline imbalance threatens internal validity
- Could address with adjusted analysis
- Better to use design strategy: 'Restricted randomization'
 - Pair-matching
 - Stratification
 - Covariate-constrained randomization

Baseline covariate imbalance Example: 8 schools (clusters)



Baseline covariate imbalance Example: 8 schools (clusters)

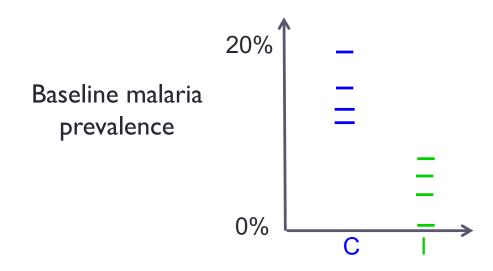


Question: Why do we care about getting balance between treatment arms on school-level malaria prevalence?

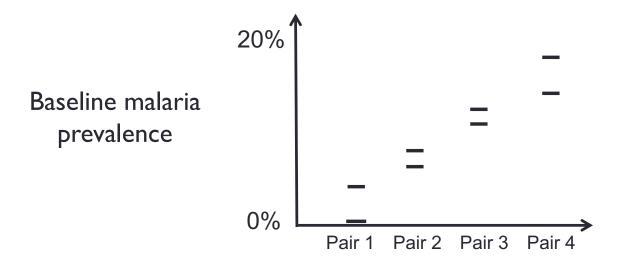
It might be related to prevalence in future!

Baseline covariate imbalance Example: 8 schools (clusters)

Example of extreme baseline imbalance using simple (ie, regular) randomization



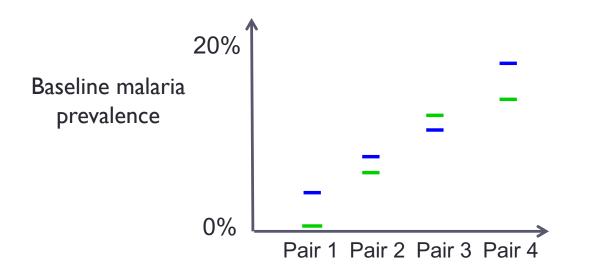
Baseline covariate imbalance Possible design solution I: pair-matching



Baseline covariate imbalance

Possible design solution I: pair-matching

One example of pair-matched randomization to control & intervention arms



Important: account for paired design in the analysis (eg, paired t-test or Wilcoxon signed rank test for cluster-level analysis or matched regression model)

Pair-matching in practice

Example from my research: published CRT outcomes paper

Efficacy of iron-supplement bars to reduce anemia in urban Indian women: a cluster-randomized controlled trial^{1,2}

Rajvi Mehta,³ Alyssa C Platt,^{4,6} Xizi Sun,⁴ Mukesh Desai,⁷ Dennis Clements,^{5,6} and Elizabeth L Turner^{4,6}*

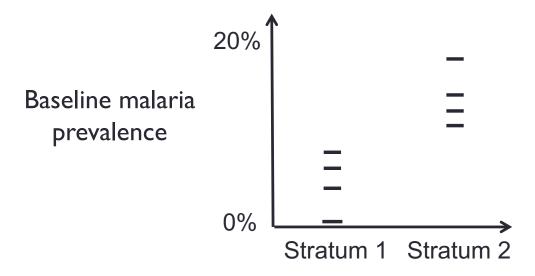
³Duke University School of Medicine, Departments of ⁴Biostatistics and Bioinformatics and ⁵Pediatrics, and ⁶Duke Global Health Institute, Duke University, Durham, NC; and ⁷Department of Hematology and Immunology, B.J. Wadia Hospital, Mumbai, Maharashtra, India

Am J Clin Nutr 2017;105:746-57. Printed in USA. © 2017 American Society for Nutrition

Baseline covariate imbalance Example: 8 schools (clusters)

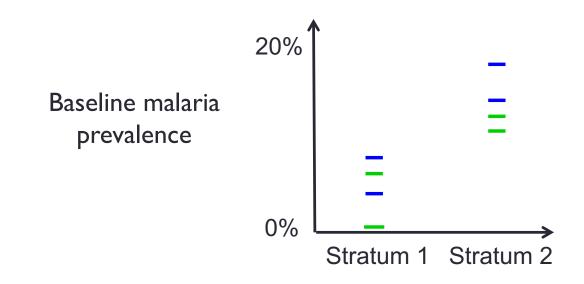
20% – Baseline malaria prevalence – 0% –

Baseline covariate imbalance Possible design solution 2: stratification



Baseline covariate imbalance Possible design solution 2: stratification

An example of stratified randomization to control & intervention arms



Important: account for stratified design in the analysis (eg, stratified permutation test or fixed effect for strata in model-based analysis)

Stratification in practice Example from my research: published CRT protocol paper

Trials

CrossMark

Open Access

Turner et al. Trials (2016) 17:442 DOI 10.1186/s13063-016-1530-y

STUDY PROTOCOL

The effectiveness of the peer delivered Thinking Healthy Plus (THPP+) Programme for maternal depression and child socioemotional development in Pakistan: study protocol for a three-year cluster randomized controlled trial

Elizabeth L. Turner^{1,2}, Siham Sikander³, Omer Bangash³, Ahmed Zaidi³, Lisa Bates⁴, John Gallis^{1,2}, Nima Ganga¹, Karen O'Donnell¹, Atif Rahman^{5*} and Joanna Maselko^{6*}

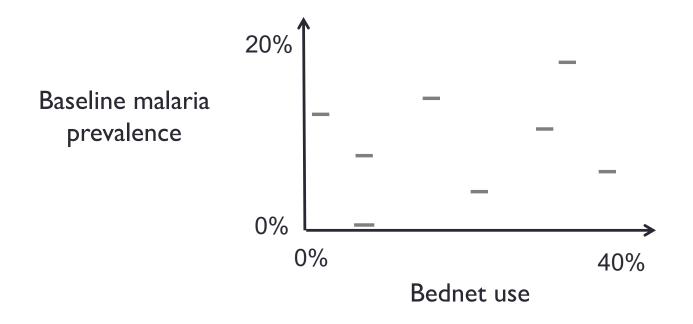
Baseline covariate imbalance

Possible design solution 3: Constrained randomization

- Previous examples only one school-level covariate
 - i.e., baseline malaria prevalence
- Often have multiple school-level covariates
 - Categorical & continuous
 - Pair-matching & stratification cannot easily handle this
- Need more general form of restricted randomization
 - Covariate-constrained randomization

Baseline covariate imbalance Possible design solution 3: Constrained randomization

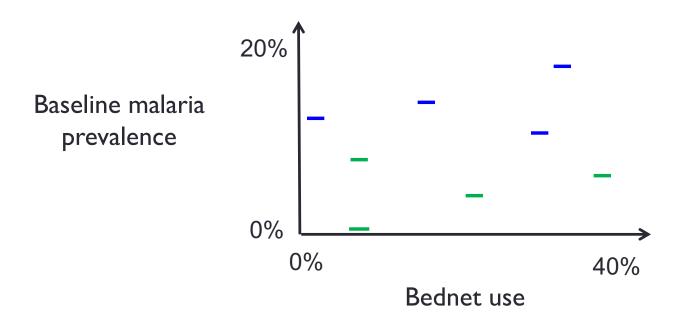
Example: balance two continuous cluster covariates



Baseline covariate imbalance

Possible design solution 3: Constrained randomization

An example of simple randomization to control & intervention arms

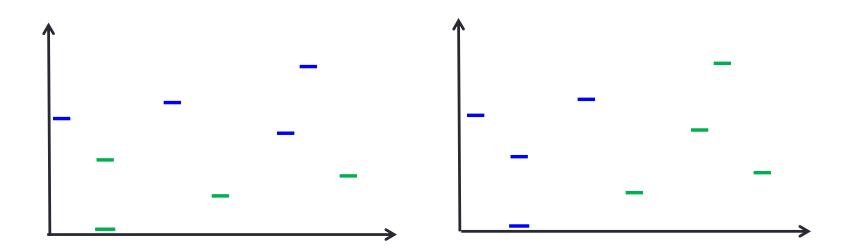


Not well-balanced on baseline malaria prevalence but reasonable balance on bednet use

Baseline covariate imbalance

Possible design solution 3: Constrained randomization

Neither randomization has good balance of both covariates across trial arms.

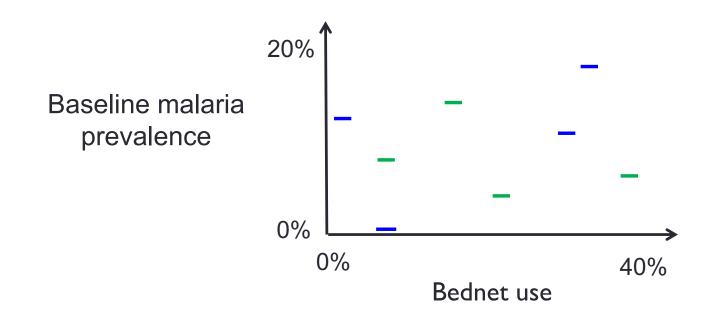


Solution: only allow randomizations that are "balanced enough" as measured by a "balance score" i.e., use covariate-constrained randomization

Baseline covariate imbalance

Possible design solution 3: Constrained randomization

This randomization could be "balanced enough"



Must account for constrained randomization design in the analysis

Covariate constrained randomization Example from my research - methods

RESEARCH ARTICLE

WILEY Statistics

An evaluation of constrained randomization for the design and analysis of group-randomized trials with binary outcomes

Fan Li^{1,2} | Elizabeth L. Turner^{1,3} | Patrick J. Heagerty⁴ | David M. Murray⁵ | William M. Vollmer⁶ | Elizabeth R. DeLong^{1,2}

Covariate constrained randomization Example from my research – software implementation

The Stata Journal (yyyy)

vv, Number ii, pp. 1–23

cvcrand and cptest: Efficient design and analysis of cluster randomized trials

John A. Gallis Duke University Department of Biostatistics Duke Global Health Institute Durham, NC john.gallis@duke.edu

Fan Li Duke University Department of Biostatistics Durham, NC frank.li@duke.edu

Hengshi Yu University of Michigan Department of Biostatistics Ann Arbor, MI hengshi@umich.edu

Elizabeth L. Turner Duke University Department of Biostatistics Duke Global Health Institute Durham, NC liz.turner@duke.edu cvcrand: Efficient Design and Analysis of Cluster Randomized Tria

Constrained randomization by Raab and Butcher (2001) <<u>doi:10.1002/1097-0258(20010215)20</u>: suitable for cluster randomized trials (CRTs) with a small number of clusters (e.g., 20 or fewer). T based on the baseline values of some cluster-level covariates specified. The intervention effect on through clustered permutation test introduced by Gail, et al. (1996) <<u>doi:10.1002/(SICI)1097-025</u> <u>SIM220%3E3.0.CO;2-Q</u>>. Motivated from Li, et al. (2016) <<u>doi:10.1002/sim.7410</u>>, the package baseline values of cluster-level covariates and cluster permutation test on the individual-level out

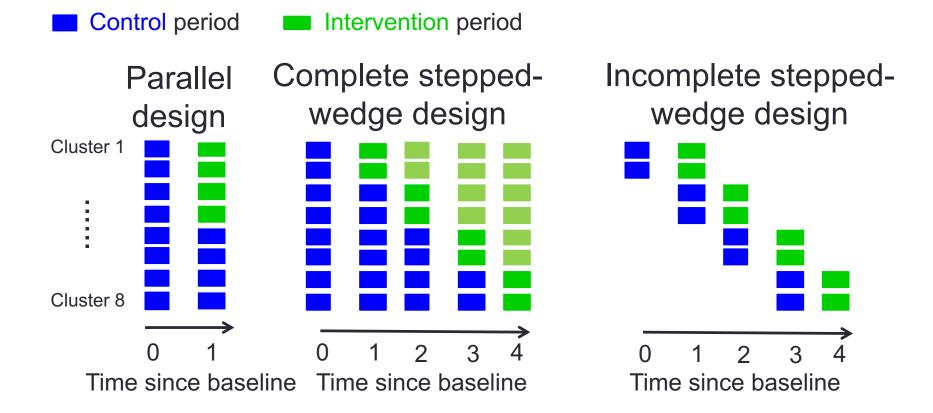
Version:	0.0.1
Depends:	R (≥ 3.3.1)
Imports:	tableone
Suggests:	knitr, rmarkdown
Published:	2017-11-28
Author:	Hengshi Yu [aut, cre], John A. Gallis [aut], Fan Li [aut], Elizabeth L. Turner
Maintainer:	Hengshi Yu <hengshi at="" umich.edu=""></hengshi>
License:	<u>GPL-2</u> <u>GPL-3</u> [expanded from: GPL (\geq 2)]

Cluster randomized trials Design challenge: baseline imbalance

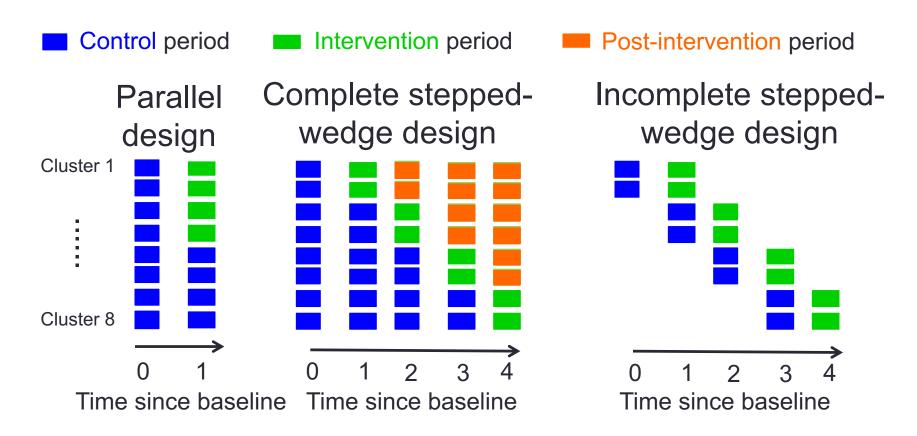
Solution: use restricted randomization

Cluster randomized trials Stepped-wedge designs

Examples with 8 clusters: I-year intervention

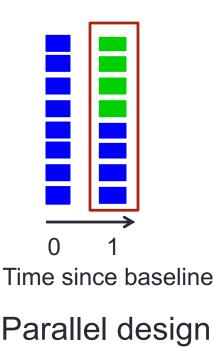


Examples with 8 clusters: I-year intervention

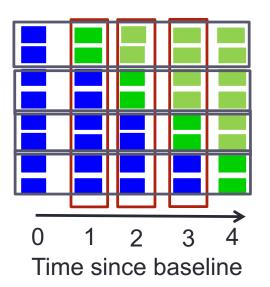


CRT analysis: treatment effects

Estimated (primarily) using between- cluster ie, **vertical** information



Estimated using both **vertical** & horizontal (ie, within-cluster) information



Complete SW design

Based on: Hemming (2015) Stat Med

Control period

Intervention period

SW-CRT design and analysis Examples from my research

Sample size determination for GEE analyses of SW-CRTs Li F, **Turner EL**, Preisser J. Under review.

Optimal allocation of clusters in cohort SW designs Li F, **Turner EL**, Preisser J. To appear in *Statistics & Prob. Letters*

Covariate constrained randomization for the design of parallel and SW-CRTs

- Invited session at Society of Clinical Trials Annual Meeting, May 2018
- Joint work with Karla Hemming (University of Birmingham), Andrew Copas (University College London) and Fan Li (Duke)

Summary

Evaluation of Public Health Interventions: Recent Developments in Cluster Randomized Trials and Related Designs

Summary

- Recent developments in CRTs
 - I. Motivating example
 - 2. Clustering
 - 3. Small # clusters & baseline covariate imbalance
 - 4. Stepped wedge designs

References - Statistical

- Campbell MK, Grimshaw JM, Elbourne DR (2004). Intracluster correlation coefficients in CRT: empirical insights into how they should be reported BMC Medical Research Methodology 4:9
- CONSORT statement on reporting of trial results http://www.consort-statement.org/
- Donner & Klar (2000) Design and Analysis of Cluster Randomization Trials in Health Research. Wiley.
- Fan LK, Lokhnygina Y, Murray DM, Heagerty PJ, DeLong ER (2015). An evaluation of constrained randomization for the design and analysis of group-randomized trials. *Statistics in Medicine* [Ahead of print]
- Hayes RJ, Moulton LH (2009) Cluster Randomized Trials. CRC Press
- Hemming K, Lilford R, Girling AJ (2015) Stepped-wedge cluster randomised controlled trials: a generic framework including parallel and multiple-level designs. *Statistics in Medicine*, 34(2): 181-196
- Murray (1998) Design and Analysis of Group Randomized Trials.
 Oxford University Press

References – Motivating example

- Halliday KE, Karanja P, Turner EL, Okello G, et al. (2012) Plasmodium falciparum, anaemia and cognitive and educational performance among school children in an area of moderate malaria transmission: baseline results of a cluster randomized trial on the coast of Kenya (2012). Tropical Medicine & International Health 17(5)" 532-549
- Halliday KE, Okello G, Turner EL, Njagi K, et al. (2014) Impact of Intermittent Screening and Treatment for Malaria among School Children in Kenya: A Cluster Randomised Trial. *PLoS Med* 11(1): e1001594.
- Pence BW, Gayne BL, Thielman N, Heine A, Mugavero MJ, **Turner EL**, Quinlivan EB (2015). Balancing contamination and referral bias in a randomized clinical trial: An application of pseudo-cluster randomization. *American Journal of Epidemiology* [Ahead of print]
- Pence BW, Gayne BL, Adams J, Thielman N, Heine AD, Mugavero MJ, McGuinness T, Raper, JL, Willig, JH, Shirey KG, Ogle M, **Turner EL**, Quinlivan EB (2015). The effect of antidepressant treatment on HIV and depression outcomes: results from a randomized trial. AIDS 29(15): 1975-1986