Milken Institute School of Public Health

Department of Biostatistics and Bioinformatics MS in Health Data Science 2023-2024

Note: All curriculum revisions will be updated immediately on the website <u>http://www.publichealth.gwu.edu</u>

THE GEORGE WASHINGTON UNIVERSITY

Program Co-Directors

Biostatistics Concentration	Bioinformatics Concentration
Angelo F. Elmi, PhD	Marcos Perez-Losada, PhD
Department of Biostatistics and Bioinformatics	Department of Biostatistics and Bioinformatics
800 22 nd Street, NW, 7 th floor	800 22 nd Street, NW, 7 th floor
Washington, DC 20052	Washington, DC 20052
Tel: 202-994-8416	Tel: 202-765-8760
Email: afelmi@gwu.edu	Email: mlosada@gwu.edu

Mission

The mission of the MS in Health Data Science is to train the next generation of leaders and practitioners in public health and medicine. Students in the program develop practical skills for innovative data analysis and will be trained in becoming excellent communicators of scientific findings in public health and biomedical research. The program takes advantage of the rich biostatistical and bioinformatics resources at GWU and in the Nation's Capital and is designed to prepare students to be independent practitioners and collaborators in interdisciplinary research.

MS Competencies

Upon completion of the MS program in Health Data Science students will possess the following competencies.

Applied Biostatistics Concentration Competencies:

- 1. <u>Statistical Programming</u>: Use statistical software to perform programming tasks for the purposes of statistical analysis of public health and biomedical data.
- 2. <u>Biostatistical Methodology</u>: Summarize and evaluate biostatistical methodology applied in public health and biomedical research.
- **3.** <u>Communication</u>: Communicate principles of statistical theory and study design to interprofessional team members.
- 4. <u>Applied Statistics</u>: Apply the principles of biostatistical methodology to perform analyses of public health and biomedical data.
- 5. <u>Scientific Writing</u>: Develop components of the statistical analysis section of public health and biomedical research proposals.

Applied Bioinformatics Concentration Competencies:

<u>Programming</u>: Develop skills in programming, data structures, algorithms, machine learning, high-performance computing and apply these skills to create approaches that facilitate biological data analysis.
 <u>Biology</u>: Develop a basis of knowledge in biology and evaluate biological data generation technologies.

3. <u>Statistics</u>: Apply statistical research methods in the context of molecular biology, genomics, medical, and population genetics research.

4. <u>Foundational Knowledge</u>: Interpret and synthesize the various foundational concepts of

bioinformatics, including genomics, algorithms, and other key tools used in bioinformatics.

5. <u>**Conceptual Integration:**</u> Integrate concepts and data across fields of computer science, statistics, data science, biology, and health sciences through bioinformatics.

Minimum Program Requirements

Applied Biostatistics Concentration

The program requires a total of 36 credit hours of course work and research, with a minimum of 35 credits of courses and a minimum of 1 credit of Master's Thesis work. Students in the program must hold an undergraduate degree from an accredited institution of higher learning and should have some background in mathematics. The minimum prerequisite for consideration of the application for admission is completion of two semesters of calculus and one semester of undergraduate statistics. The full prerequisite includes an additional semester of multivariable calculus and a semester linear algebra. Students who apply without the minimum prerequisite will not be considered for admission. Students who apply without the full prerequisite will be asked to complete multivariable calculus and/or linear algebra in their first semester.

Applied Bioinformatics Concentration

The program requires a total of 36 credit hours of course work and research, with a minimum of 34 credits of courses and a minimum of 2 credits of research and Master's Thesis work. Students in the program must hold an undergraduate degree from an accredited institution of higher learning and should have a strong background in mathematics, statistics, biology, bioengineering, and/or computer science.

Concentration-Specific Prerequisites

Applied Biostatistics Concentration	Applied Bioinformatics Concentration
 Minimum Pre-requisite Calculus I and II (GW equivalent is MATH 1231 and 1232) Undergraduate Statistics (GW equivalent is PUBH 3142 or STAT 1051) Full Pre-requisite (in addition to above) Calculus III (GW equivalent is MATH 2233) Linear Algebra (GW equivalent is MATH 2184) 	 a course in undergraduate statistics a course in undergraduate biology a course in undergraduate computer science

All applications are submitted through SOPHAS.org. Information about Milken Institute SPH Admissions and policies are available online at http://publichealth.gwu.edu/admissions/graduate-admissions. For reporting GRE general test scores use the following institutional code: 5268.

Program Requirements

Applied Biostatistics Concentration

The curriculum includes practical development of applied data analysis skills as well as coverage of specific biostatistical topic areas and issues in the conduct of biostatistical and medical research. The program requires a total of 36 credit hours of coursework including one credit for the Master's Thesis.

Course Distribution Summary			
Required Courses			
Elective Courses	7		
Consulting and Thesis			
Biostatistical Consulting (1 credit)			
• Master of Science Thesis (1 credit)			
Total credits	36		

Applied Bioinformatics Concentration

The curriculum includes broad training across core areas of bioinformatics, including statistics, biology, computer science, and ethical issues in the conduct of biomedical research. The program requires a total of 36 credit hours of coursework and research, with a minimum of 34 credits of coursework and 2 credits for additional research courses and Master's Thesis work.

Course Distribution Summary	Credits
Required Courses	24
Elective Courses	10
Master of Science Thesis and additional research courses (minimum required)	2
Total credits	36

Milken Institute School of Public Health

Department of Biostatistics and Bioinformatics MS in Health Data Science 2022-2023

Note: All curriculum revisions will be updated immediately on the website <u>http://www.publichealth.gwu.edu</u>

THE GEORGE WASHINGTON UNIVERSITY

Required Core Courses — Common to Both Concentrations (9 Credits)

Course	Course Name	Semester	Credits
PUBH 6080	^Pathways to Public Health	Fall, Spring	0
PUBH 6850	Introduction to SAS for Public Health Research	Fall, Spring	1
PUBH 6851	Introduction to R for Public Health Research	Fall, Spring	1
PUBH 6852	Introduction to Python for Public Health Research	Fall, Spring	1
PUBH 6860	Principles of Bioinformatics	Fall	3
PUBH 8870	Statistical Inference for Public Health Research I	Fall	3

Required Courses — Applied Biostatistics Concentration (18 Credits)

-			-
PUBH 6862	Applied Linear Regression Analysis for Public Health	Fall	3
	Research		
PUBH 6864	Applied Survival Analysis for Public Health Research	Fall	3
PUBH 6865	Applied Categorical Data Analysis for Public Health	Spring	3
	Research		
PUBH 6866	Principles of Clinical Trials	Spring	3
PUBH 6887	Applied Longitudinal Data Analysis for Public Health	Spring	3
	Research		
PUBH 8871	Statistical Inference for Public Health Research II	Spring	3
			• · · >

Required Courses — Applied Bioinformatics Concentration (15 Credits)

PUBH 6859	High Performance and Cloud Computing	Spring	3
PUBH 6861	Public Health Genomics	Spring	3
PUBH 6884	Bioinformatics Algorithms and Data Structures	Spring	3
PUBH 6854	Applied Computing in Health Data Science	Fall	3
PUBH 6886	Statistical and Machine Learning for Public Health	Spring	3
	Research		

Elective Courses Applied Biostatistics Concentration - 7 Credits Bioinformatics Concentration – 9 Credits

Elective Courses — Common to Both Concentrations Pre-Approved Courses Shown Below

Other courses can	be selected with	advanced	advisor	approval.

PUBH 6853	Use of Statistical Packages for Data Management and	Fall, Spring	3
	Data Analysis		
PUBH 6856	Advanced SAS for Public Health Research	Summer	1
PUBH 8885	Computational Biology	Fall	3
PUBH 6899	Topics in Biostatistics and Bioinformatics	Fall, Spring	3
	Linear Models in Biostatistics (permission of instructor	Spring	3
PUBH 8875	required)		

	Generalized Linear Models in Biostatistics (permission of	Fall	3				
PUBH 8877 STAT 6223	instructor required) Bayesian Statistics: Theory and Applications	Spring	3				
STAT 0225							
	Elective Courses — Biostatistics Op	otions					
PUBH 6003	Principles and Practice of Epidemiology	Fall, Spring	3				
PUBH 6299	Cost Effectiveness in Public Health Research	Summer	1				
PUBH 6861	Public Health Genomics	Spring	3				
PUBH 6863	Applied Meta-Analysis	Fall	1				
PUBH 6886	Statistical and Machine Learning for Public Health Research	Spring	3				
PUBH 6899	Topics in Biostatistics and Bioinformatics: Advanced Clinical Trials	Fall	2				
PUBH 8879	An Introduction to Causal Inference for Public Health Research	Spring (alternating years)	3				
STAT 6227	Survival Analysis	Fall, Spring	3				
51111 0227			5				
	Elective Courses — Bioinformatics C	Options					
BIOC 6240	Next Generation Sequencing	Spring	2				
CSCI 6221	Advanced Software Paradigms	Fall, Spring	3				
CSCI 6231	Software Engineering	Spring	3				
PUBH 6238	Molecular Epidemiology	Fall	1				
PUBH 6244	Cancer Epidemiology	Spring	2				
PUBH 6262	Introduction to Geographic Information Systems	Spring	1				
PUBH 6263	Advanced GIS	Spring	1				
PUBH 6276	Public Health Microbiology	Fall	3				
PUBH 6278	Public Health Virology	Spring	3				
PUBH 6894	Research Analytics	Online	3				
PUBH 8871	Statistical Inference for Public Health Research II	Fall, Spring	3				
PUBH 8878	Statistical Genetics	Fall	3				
	Consulting/Research/Thesis						
	Applied Biostatistics Concentration – 2	2 Credits					
A	Applied Bioinformatics Concentration – 2 Cro						
PUBH 6869	Principles of Biostatistical Consulting	Spring	1				
	Biostatistics Concentration ONLY	~~~~					
PUBH 6897	Research in Biostatistics and Bioinformatics	Fall, Spring, Summer	1-4				
	Bioinformatics Concentration ONLY	_					
PUBH 6898	Master of Science Thesis	Fall, Spring, Summer	1-3				
	BOTH Concentrations						

MS Graduation Requirements

Graduation

While degrees are awarded at the end of each semester, formal commencement ceremonies occur only in May. Students are eligible to participate in graduation activities only after they have completed all degree requirements and have no financial obligations to the University. Students may include MS designation after their name upon completion of all degree requirements.

Graduation Requirements

1. Credits: Successful completion of 36 credits.

2. *Master's Thesis or Research Report: Successful defense of a Master's Thesis or presentation of a Research Report.

3. Grade point average: A minimum overall grade-point average of B (3.0).

4. Time Limit Requirement: The degree must be completed within five years.

5. Transfer Credits: No transfer credits will be accepted.

6. Pathways to Public Health. Must be successfully completed unless waiver received.

7. Ethics/Professional Skills Requirement: Participate in department-led ethical and professional skills training.

8. **Professional Enhancement requirement**: Students must participate in 8 hours per degree program of advisor pre-approved Public Health-related lectures, seminars, symposia and/or conferences related to the appropriate field of study specifically focused on research and research ethics. Students must submit documentation of Professional Enhancement activities to the SPH Office of Student Records. Instructions can be found here: https://publichealth.gwu.edu/academics/forms

9. **CITI Training requirement**: All students are required to complete training regarding human subject protection regulation and the Health Insurance Portability and Accountability Act of 1996 (HIPAA). To fulfill this requirement, you must complete the Collaborative IRB Training Initiative (CITI) Course in The Protection of Human Research Subjects.

10. **Integrity Quiz & Plagiarism Requirement**: All students are required to review the George Washington University Code of Academic Integrity and take the quiz within their first semester of study. The Code of Integrity and step-by-step instructions can be found here: http://publichealth.gwu.edu/integrity

* The defense of a Master's Thesis is different from the PUBH 6898 Master of Science Thesis course, which is a requirement for both concentrations.

Year	Semester	Course	Title	Credits
		PUBH 6850	Introduction to SAS for Public Health Research	1
		PUBH 6851	Introduction to R for Public Health Research	1
	Fall	PUBH 6852	Introduction to Python for Public Health Research	1
Year		PUBH 6862	Applied Linear Regression for Public Health Research	3
1		PUBH 8870	Statistical Inference for Public Health Research I	3
		PUBH 6865	Applied Categorical Data Analysis for Public Health Research	3
	Spring	PUBH 6866	Principles of Clinical Trials	3
		PUBH 8871	Statistical Inference for Public Health Research II	3
		PUBH 6864	Applied Survival Analysis for Public Health Research	3
	Fall	PUBH 68xx	Elective	3
		PUBH 6860	Principles of Bioinformatics	3
Year		PUBH 68xx	Elective	3
2		PUBH 6887	Applied Longitudinal Data Analysis for Public Health Research	3
	Spring	PUBH 68xx	Elective	1
		PUBH 6869	Principles of Biostatistical Consulting	1
		PUBH 6898	Master of Science Thesis	1

Sample Schedule HDS-MS Biostatistics Track

Sample Schedule HDS-MS Bioinformatics Track

Year	Semester	Course	Title	Credits
		PUBH 6850	Introduction to SAS for Public Health Research	1
		PUBH 6851	Introduction to R for Public Health Research	1
	T-11	PUBH 6852	Introduction to Python for Public Health Research	1
	Fall	PUBH 6080	Pathways to Public Health	0
Year		PUBH 6860	Principles of Bioinformatics	3
1		PUBH 6854	Applied Computing in Health Data Science	3
		PUBH 6859	High Performance and Cloud Computing	3
	Spring	PUBH 6861	Public Health Genomics	3
		PUBH 6884	Bioinformatics Algorithms and Data Structures	3
	Fall	PUBH 8870	Statistical Inference for Public Health Research I	3
		PUBH 8885	Computational Biology	3
V		PUBH 68xx	Electives	3
Year 2		PUBH 6886	Statistical and Machine Learning for Public Health Research	3
2	Spring	PUBH 68xx	Electives	3
	Spring	PUBH 6897	Research in Biostatistics and Bioinformatics	2
		PUBH 6898	Master of Science Thesis	1
ТО	TOTAL CREDITS			36